CHEST EXAMINATION IN CHILDREN

DANUTA ROIK

PEDIATRIC RADIOLOGY DEPARTMENT MEDICAL UNIVERSITY OF WARSAW

DIAGNOSTIC METHODS IN CHEST DISEASES

Chest X-ray first choice in most diseases in the chest

Computed Tomography (CT)

USG
NS
MRI

CHEST EXAMINATION

I.TECHNICAL FACTORS AND FILMS INTERPRETATION

II. COMMON PATHOLOGIC CONDITIONS

III. LUNG DISEASES IN NEONATE

IV. MEDIASTINAL MASSES

V. CONGENITAL HEART DISEASE

I. TECHNICAL FACTORS AND FILMS INTERPRETATION

CHEST X-RAY the most frequently ordered examination

INTERPRETING THE FILM (A, B, C, D's)

$\mathbf{A} = ABDOMEN$

$\mathbf{B} = \mathbf{BONES} \& \mathbf{SOFT} \mathbf{TISSUES}$

C = CHEST - airways, mediastinum, lungs

 \mathbf{D} = Diaphragm

CHEST ANATOMY

CHEST ANATOMY - MEDIASTINUM

MEDIASTINUM

STANDARD CHEST X-RAY

- position erect
- beam direction PA
- distans 120-150 cm

PEDIATRIC CHEST

(OR BEDRIDDEN PATIENTS)

- position supine
- beam direction AP
- distans 100-120 cm and less..

GREATER MAGNIFICATION OCCURS WHEN STRUCTURES, SUCH AS THE HEART, ARE FARTHER FROM THE FILM !!!

POSITION

THE LUNG VOLUME DETERMINES

WHAT IS SEEN ON THE FILM !!!

THE HEART MAY APPEAR

ENLARGED

THE VESSELS MAY GIVE A FALSE IMPRESSION OF AN INFILTRATE

THE RADIOGRAPH HAS A HAZY QUALITY

THE HYPEREXPANDED CHEST:

LUNGS ARE BLACK (film not overexposed) ENTIRE HEART IS ABOVE DIAPHRAGM DIAPHRAGMS ARE FLAT (not dome-shaped)

THE CRITERIA FOR A NORMAL LUNG VOLUME

LESS THAN 1/3 OF THE HEART IS PROJECTED BELOW THE HEMIDIAPHRAGM

THE DIAPHRAGM IS ROUNDED, AND THE 7th ANTERIOR RIB INTERSECTS THE DIAPHRAGM

THE LUNGS ARE AIR FILLED (black)

ROTATION

THE ROTATED CHEST FILM:

Frontal view

- 1. CLAVICLES ARE ASYMMETRIC
- 2. DIFFERENCE IN AERATION
- 3. HEART PROJECTED OVER HEMITHORAX
- 4. RIBS ARE ASYMMETRIC

Lateral view 5. RIBS VISIBLE; SPINOUS PROCESSES NOT VISIBLE 6. HEART IS ROUNDER

THIS GLAND CAN SIMULATE :

⇒CARDIAC ENLARGEMENT
⇒LOBAR COLLAPSE
⇒PULMONARY INFILTRATES
⇒MEDIASTINAL MASSES

PROMINENT -IN MANY CHILDREN UNTIL 4-5 YEARS OF AGE

A PROBLEM IS WHEN -IT IS STILL PROMINENT OVER THE AGE OF 5

THYMUS

MAY OCCUPY THE ENTIRE ANTERIOR THORAX !!! IT USUALLY SHRINKS :

- ♦ AS THE CHILD GETS OLDER
- DURING PERIODS OF "STRESS"

IF AN ABNORMALITY IS SUSPECTED IN THE MEDIASTINUM

- US, CT or MR is performed

THYMUS "Sail sign"

THYMUS "Wave sign"

2.02cm 2.98cm

Thymus

3.54cm 2.62cm

- (

US - anterior mediastinum

- (

INTERPRETING THE FILM (A, B, C, D's)

$\mathbf{A} = ABDOMEN$

$\mathbf{B} = \mathbf{BONES} \& \mathbf{SOFT} \mathbf{TISSUES}$

C = CHEST - airways, mediastinum, lungs

 \mathbf{D} = Diaphragm

A = ABOMEN

B = BONES & SOFT TISSUES

BONES

⇒ FRACTURES
 ⇒ CONGENITAL ABNORMALITIES
 ⇒ BONE DESTRUCTION

SOFT TISSUES

⇒SWELLING (neck, thorax, abdomen)
 ⇒FOREIGN BODY
 ⇒CALCIFICATIONS
 ⇒MULTIPLE ARTIFACTS
 (hair braids, breast nipples, bandages, skin folds)

CONGENITAL ABNORMALITY OF THE VERTEBRAL BODY & RIBS

ARTEFACTS

SKIN FOLDS

frequently seenin young infants

 must be differentiated from pneumothoraces

ARTEFACTS

HAIR BRAID

CHEST X-RAY AFTER CARDIOSURGERY OPERATION

CHECK ALL THE TUBES & CATHETERS !!!

GIVE THEM NAMES :
1 Endotracheal tube
2 Central venous catheter
3 Tube for pleural drainage
4 Metal clip
5 Electrodes

ENDOTRACHEAL TUBE IS POSITIONED CORRECTLY NOW - the same patient II. COMMON PATHOLOGIC CONDITIONS

TENSION PNEUMOTHORAX !!!

- 1. SHIFT OF THE MEDIASTINUM AWAY FROM THE MIDLINE
- 2. FLATTENING OF THE DIAPHRAGM ON THE AFFECTED SIDE

XII 19 b

LOBAR COLLAPSE (ATELECTASIS) ↓ ↓ MUCUS PLUGGING (asthmatic, postoperative patients) FOREIGN BODIES LYMPH NODES (TBC, LYMPHOMA) EXTRINSIC MASSES (BRONCHOGENIC CYSTS)

FOREIGN BODY IN THE RESPIRATORY TRACT DIAGNOSTIC ALGORITHM

CLINICAL EXAMINATION – ANAMNESIS

PLAIN X-RAY OF THE CHEST

OPAQUE FOREIGN BODY

NON OPAQUE FOREIGN BODY

BRONCHOSCOPY

ATELECTASIS

PULMONARY FIBROSIS

BRONCHOSCOPY

LUNG DISTENSION (OR NORMAL)

Inspiratory & expiratory chest X-ray

> OBTURATORY EMPHYSEMA

OPAQUE FOREIGN BODY

Obturatory emphysema

Expirated chest film - after bronchoscopy

NON-OPAQUE FOREIGN BODY ?

INSPIRATORY&EXPIRATORY FILMS

LEFT DECUBITUS

RIGHT DECUBITUS

BRONCHOGRAPHY - BRONCHIECTASIS; LOBAR FIBROSIS

(after foreign body aspiration)

Helical CT

HRCT

HRCT - High Resolution Computed Tomography

Left lung collapse

PLEURAL EFFUSION

Pleural effusion

Pneumonia

Lymphatic effusion

PLEURAL EFFUSION - US

1.21cm

八

THE SILHOUETTE SIGN

① ① ①

THE MARGINS ARE FUZZY OR OBLITERATED BECAUSE THE LUNG ADJACENT TO THESE MARGINS IS ABNORMAL

Pleural effusion "Ellis – Damoisseau" line

PNEUMONIA - UNKNOWN ETIOLOGY (BACTERIAL)

PNEUMONIA

- AFTER ANTIBIOTIC TREATMENT

- BEFORE

PNEUMONIA

2. 3 DAYS LATER

3. 10 DAYS LATER

STAPHYLOCOCCAL PNEUMONIA

5 DAYS LATER

S. AUREUS PNEUMONIA

LUNG ABSCESS

Pulmonary cavities necrotic meta / abscess

RSV pneumonia (viral)

AFTER THERAPY

Interstitial changes

ASPIRATION PNEUMONIA

- full-term newborn

-hyperinflated peripheral parts

-massive parenchymal densities

AFTER THERAPY

Gastroesophageal reflux

Tracheoesophageal fistula in a child with chronic pneumonia

Tuberculosis

TB – 4 y.o. boy

TB – 61 y.o. male

TB MILIARIS 16 y.o. girl

META from testis choriocarcinoma 16 y.o. male

WILMS TU - meta

III. LUNG DISEASE IN NEONATE

ETIOLOGY OF ACUTE RESPIRATORY INSUFFICIENCY IN NEWBORNS

PULMONARY

premature

RDS TTN pneumonia congenital abnormalities full-term TTN MAS pneumonia congenital abnormalities

OTHERS

CNS
congenital heart diseases
metabolic
hematology disorders
congenital abnormalities

TTN- transient tachypnoe of the newborn = wet lung syndrome (retained fetal fluid) MAS - meconium aspiration syndrome

I degree fine reticulogranular densities
I degree fine densities, leak bronchogram
II degree diffuse opacities; marked underaeration of both lung, bronchogram, borders of the heart and diaphragm are obliterated

IV degree no aerated lung ("ground glass appearance")

RDS: I degree - fine reticulogranular densities

RDS: II degree - fine densities, leak bronchogram

III degree - diffuse opacities; marked underaeration of both lung, bronchogram, borders of the heart and diaphragm are obliterated

IV degree - no aerated lung ("ground glass appearance")

28.05.01 PDA

4.07.01

24.05.01

24.05.01 surfactant

RDS IV + PDA

ACUTE RESPIRATORY INSUFFICIENCY - COMPLICATIONS AFTER MECHANICAL VENTILATION

BPD

late

<u>early</u>

pneumothorax
pneumomediastinum
pneumopericardium
pneumoperitoneum

interstitial emphysema atelectasis PDA pulmonary hypertension

RDS, pneumomediastinum

PNEUMOMEDIASTINUM & PNEUMOTHORAX

THYMUS - "sail sign"

pneumothorax pulmonary interstitial emphysema

DIFFERENTIAL DIAGNOSIS

	TTN	RDS	Pneumonia
Etiology	Cesarean section	Surfactant deficiency	Intrauterine infection, aspiration
Fetal age	Premature, full-term	Premature	Full-term, premature
Lung volume	Normal	Ļ	† +
Complication		pneumothorax BPD	Pleural effusion
Regression	quickly (2-3 days)	↓ ↑	After antibiotic therapy

Venous catheter

ETIOLOGY OF ACUTE RESPIRATORY INSUFFICIENCY IN NEWBORNS

MAS - meconium aspiration syndrome

 fetus aspirate meconium *in utero* because of some perinatal or parturitional stress

meconium may be inhaled at the first breath

 the radiograph shows: increased lung volume "patchy" opacities throughout both lungs

MAS -

coarse, globular, rounded densities dispersed throughout the lungs;

IV. MEDIASTINAL MASSES

C = CHEST

The mediastinum graphically is separated into: the anterior, middle and posterior compartments

MEDIASTINUM IS COMPOSED OF:

THE THYMUS, TRACHEA, HEART, GREAT VESSELS, ESOPHAGUS, LYMPH NODES, NEURAL ELEMENTS

ANTERIOR MEDIASTINUM (the four T's and a C)

- TERATOMA
- THYMOMA
- **THYROID** (often mentioned, never seen !)
- "TERRIBLE" LYMPH NODE ENLARGEMENT (by either infection or malignancy)
 CYSTIC HYGROMA

MIDDLE MEDIASTINUM (for each organ abnormality)

ESOPHAGUS : DUPLICATION CYSTS
GREAT VESSELS : ANEURYSMAL DILATATION
HILA : ENLARGED LYMPH NODES (leukemia, lymphoma, tuberculosis, etc.)
TRACHEA : BRONCHOGENIC CYSTS
PERICARDIUM : CYST

POSTERIOR MEDIASTINUM (T, E, N)

 TUBERCULOSIS OR ANY SPINAL INFECTION
 EXTRAMEDULLARY HEMATOPOIESIS (ADULTS)
 NEURAL TUMORS : NEUROBLASTOMA, GANGLIONEUROMA, NEURENTERIC CYST

MEDIASTINAL MASSES DIAGNOSTIC ALGORITHM

CHEST X-RAY

Neuroblastoma

NEUROBLASTOMA

NHL

After 3 weeks of treatment

NHL

Primary clinical diagnosis - Pneumonia ?

Pre-contrast scan

Post - contrast enhancement

13 y.o. girl

1 y.o. boy -respiratory tract infection

2008 Jan 09 M 3602 Acc: 24844 2009 Nov 28 Acq Tm: 12:39:01.812

Bronchogenic cyst

SCHWANNOMA – 4 y.o boy

100.0 kV 70.0 mA 5.0 mm/0.0:1 Tilt: 0.0

V. CONGENITAL HEART DISEASE

Algorithm for diagnosis of congenital heart disease in children

- **Chest X-Ray/Echocardiography**
 - Non-invasive diagnostic techniques:
 MR, CT, NS
 - **Invasive diagnostic techniques:**
 - cardiac catheterisation, angiography

Treatment: conservative, surgery, interventional transvascular procedures

CT- noninvasive diagnostic procedure

CACTA - coronary arteries CT angiography

Interventional Transvascular Percutaneous Procedures

- Rashkind baloon atrioseptostomy
- **Coil Embolisation** PDA, collaterals, fistulas
- Amplatzer Occlusion
 ASD, VSD
 - Baloon Valvuloplasty
 - Stenotic pulmonary valve. Stenotic aortic valve
 - **Baloon Angioplasty**
 - Stenosis of peripheral pulmonary arteries. Recoarctation of the aorta

Chest X-ray in newborn & infants

- Supine position
- Only frontal film (AP=anterior – posterior)
 - Without contrast medium in esophagus

Chest X–ray Film

 Size of the vessels and pulmonary circulation
 Size of the heart
 Deformations of the ribs

EBSTEIN ANOMALY – heart size

1993 May 18 M 9944 Acc: 585212 2009 Nov 1 Acq Tm: 10:05:02

PULMONARY VASCULARITY

NORMAL - VASCULAR ANOMALITIES (RIGHT SIDED ARCH, RINGS) - AORTIC STENOSIS - CoA

INCREASED – VSD - ASD - PDA

- TGA

DECREASED - PS - TETRALOGY OF FALLOT

INCREASED VASCULARITY VSD+ASD VSD

DECREASED VASCULARITY

Tetralogy of Fallot

CAVC – pulmonary edema

VASCULAR ANOMALITIES - RINGS

- DYSPNOE, STRIDOR
- ECHO
- BARIUM SWOLLOW
- CT, MRAORTOGRAFY

DOUBLE AORTIC ARCH

DOUBLEAORTIC ARCH

Nasogastric tube in esophagus

RIGHT SIDED AORTA

ABERRANT RIGHT SUBCLAVIAN ATERY

Right sided aorta & a. lusoria

skrzele glowne lewe

askie oskrzele glowne prawe

CoA and ReCoA

- CoA echo + doppler + MR/CT
 - aortography newborn
- **ReCoA**
 - aortography + baloon angioplasty
 - aortography + stent in older patients

CoA & a. Iusoria

CT angio- ReCoA

before

balonoplasty

after

Aortography- ReCoAstent

echo-cardiography

Rashkind procedure

Rashkind procedure

- echo
- aortography
- babies > 6 month ageCOIL embolisation

PDA coil embolisation

PDA after coil embolisation

transesophageal echocardiography + cardiac catheterization

 Amplatzer occlusion device

ASD Amplatzer

VSD

transesophageal echocardiogarphy + cardiac catheterisation (Amplatzer) hemodynamic examination – pulmonary

hypertension?

VSD

Chest X-ray lateral view

Amplatzer occluder

 echo+ doppler angiocardiography
hemodynamic examination – gradient RV/PA
balonoplasty

Tetralogy of Fallot

PS balonoplasty

Risks of complications related to interventional procedures

- Local (transient without long term effects)
- bleeding
- vessel spasm
- hematoma
- General
- transient hypotension
- arrhythmia
- Major complications
 - cardiac wall rupture and cardiac tamponade, vessel rupture

COMPLICATION

